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Abstract—In wireless caching networks, each user generally
consumes more than one content in a row, and the number of
consecutive demands could vary for different users. In addition,
popular contents are usually classified into several categories. In
this case for consecutive user demands, the content popularity
model largely depends on the previously consumed contents, i.e.,
contents that belong to the same category as the previously
consumed content would be highly popular. Based on this
observation, this paper proposes an optimal probabilistic caching
policy for consecutive user demands in categorized contents. The
proposed caching scheme maximizes the minimum of the success
probabilities for content delivery of all users when individual
users request different numbers of contents in a row. Comparing
with the content placement optimized for one-shot request,
intensive numerical results verify the impacts of categorized
contents and consecutive user demands on the caching policy.

I. INTRODUCTION

Tens of exabytes of global data traffic are being handled now
on a daily basis [1]. In many mobile services, a relatively small
number of popular contents is requested at ultra high rates,
e.g., on-demand streaming services [2], [3]. In this respect,
most of user demands for diverse multimedia contents are
overlapped and repeated. To deal with this issue, wireless
caching technologies have been studied, wherein the base
station (BS) or the server pushes popular contents for off-
peak time to cache-enabled nodes so that these nodes provide
popular contents directly to nearby mobile users [4]–[6]. Since
the wireless caching allows popular contents closer to users, it
also has an advantage of reducing the content delivery delay.

To take full advantage of wireless caching, many caching
helpers, which act as small BSs, should be installed near users
[4]. Furthermore, a device-to-device (D2D)-assisted caching
network has been studied in [7]–[9], where mobile devices can
store popular contents and directly respond to the file requests
of neighboring users [10]. In practice, both caching helpers and
cache-enabled devices have finite storage size owing to cost
issues. Therefore, the system should determine which content
is better to be stored in helpers or cache-enabled devices.
This problem is commonly known as the content placement
problem.

The goal of the content placement problem is to find optimal
caching policies according to the popularity distribution of
contents and network topology. With a fixed network topology,
the caching schemes to minimize the average downloading
delay and the average bit error rate have been proposed in [11]
and [12], respectively. Considering channel fading effects, the

deterministic caching schemes are proposed to minimize the
average delay [13] and to minimize the outage probability in
relay networks [14]. In addition, the authors of [15] proposed
a joint caching and routing technique to minimize the requests
routed to the BS, while [16] discussed cooperative caching and
delivery for minimizing average downloading latency.

In stochastic wireless caching networks, there exist several
research efforts on probabilistic content placement introduced
in [17]. Many probabilistic caching methods have been pro-
posed depending on various optimization goals, e.g., maxi-
mization of cache hit probability [17], cache-aided throughput
[18], average success probability of content delivery [19],
average successfully enjoyable content quality [20].

However, these previous research results on the content
placement problem do not consider the consecutive user de-
mands for categorized contents. The content popularity for
one-shot request is commonly modeled by the Zipf distribution
[7]. However, if the user requests multiple contents continu-
ously and contents are categorized, the popularity model will
not be likely to follow the Zipf distribution. For example,
when a user begins to watch a video, the popularity on the
first content is random, e.g., Zipf distribution. However, the
popularity of the next video largely depends on the previously
watched video and its category when the user chooses the
video right after watching the previous one. We can expect that
the popularity of contents whose category is the same as that of
previously consumed contents will be high. In this respect, this
paper proposes a probabilistic caching policy for consecutive
content demands in wireless caching helper networks.

The main contributions are as follows:
• Different from most results on the content placement

problem in which only one-shot request is considered,
consecutive user demands and different numbers of con-
tent requests for users are considered. In practice, even if
users enjoy the same service, there are heavy users who
consume a lot of contents in a row and users who do not.

• The concept of a content category and the different popu-
larity model for consecutive user demands for categorized
contents are captured in the proposed system model. Con-
sidering consecutive user demands, the popularity model
for the categorized contents depends on the previously
consumed contents.

• The iterative algorithm for finding the optimal probabilis-
tic caching policy for categorized contents and consec-
utive user demands is proposed. The proposed caching



scheme maximizes the minimum of the successful deliv-
ery rates of all users. The proposed iterative algorithm
can guarantee to make the optimal solution converge.

• Numerical results show the impacts of categorized con-
tents and consecutive user demands on the caching policy.
Performance gains of the proposed scheme increase as
contents in the same category become highly relevant and
the number of consecutive requested contents grows.

The rest of the paper is organized as follows. The system
model is described in Section II, and the average successful
delivery rate for consecutive user demands is derived in a
mathematical form in Section III. In Section IV, the optimal
probabilistic caching policy is proposed. The numerical results
are shown in Section V and Section VI concludes the paper.

II. SYSTEM MODEL

This section describes the wireless caching network and the
content popularity model. We consider the scenario in which
users consume multiple contents in sequence and contents are
grouped into several categories.

A. Wireless Caching Network

This paper considers a cellular model where multiple
caching helpers exist and users request a particular cached
content from a library F . Suppose that a library F consists of
F contents and all contents are with normalized unit sizes. For
the contents of different sizes, each content can be partitioned
into small chunks of the same size and each chunk can be
considered as an individual content. Users search through the
helper candidates that cache the requested content within a
radius of R, as shown in Fig. 1, and each user selects one of
the candidates for content delivery.

The caching helpers have the finite storage size of M , which
means only M contents can be cached in each helper. In
practice, F > M , therefore caching helpers cannot store all
of contents in F . If there is no helper caching the requested
content within the radius R from the user, the server which
has the whole library can deliver the desired content via a
cellular link. Since the caching helpers are usually much closer
to the content-requesting users than the server, the users are
assumed to prefer downloading the content from the caching
helpers rather than directly from the server, due to transmission
delay. Therefore, direct transmission from the server is not
considered in this paper.

Different from most of existing works on wireless caching
policy, this paper allows each user to request multiple con-
tents consecutively. For example, on-demand streaming users
usually start watching videos with the category they clearly
want to see, i.e., sports highlights. They would watch multiple
videos in the similar category in a row, and each user tends
to consume different numbers of videos. Therefore, this paper
considers L types of users and a type-l user requests l cached
contents in a row from nearby helpers for l = 1, · · · , L. For
example, in Fig. 1, the type-L user is scheduled to exploit the
wireless caching network, and the user can receive the desired
contents from several nearby helpers.

Fig. 1. Wireless caching network model

The caching helpers and users are modeled using the inde-
pendent Poisson point processes (PPPs) with intensity λ and
λu, respectively. Assume that each type of users is distributed
with the same intensity. This paper utilizes the probabilistic
caching placement method [7] for caching helpers to cache file
i with probability pi. Suppose that the system does not allow
any additional link activation within the radius R of the user
who is already downloading the content from certain helper.
By taking R sufficiently large and/or exploiting orthogonal
resources for each user’s coverage, the system can guarantee
negligible interference among multiple links.

The Rayleigh fading channel is assumed for the wireless
links from users to their caching helpers. Denote the channel
with h =

√
Dg where D = 1/dα controls path loss with

d being the user-device distance and α being the path loss
exponent. In addition, g represents a fast fading component
with complex Gaussian distribution g ∼ CN(0, 1).

B. Content Popularity Model

Each content i ∈ F has a popularity probability fi, which
follows the Zipf distribution [17]: fi = i−γ/

∑F
j=1 j

−γ where
γ denotes the popularity distribution skewness. Since this
paper considers users who request multiple contents in a
row, the popularity model for consecutive content requests is
required. If a user is consuming a certain content, then this user
will be highly likely to request another content which belongs
to the same category as that of the previous content. On the
other hand, popularities of contents in other categories would
be very low. This popularity model depends on the previous
content and it is clearly different from the popularity model
for the one-shot content request, i.e., Zipf distribution. Thus,
when a user is consuming content i, the popularity of the next
content j is denoted by fj|i and fj|i 6= fj .

Let a library F is divided into K categories, denoted by Gk
for k = 1, · · · ,K and each category consists of N contents.
G(i) denotes the index of the category which content i belongs
to. Since the user is more likely to request the next content
whose category is the same as the current content than other
categories, fj|i > fk|i for all j and k satisfying G(j) = G(i)
and G(k) 6= G(i). In addition, the popularity model for
contents in each category could be independently designed,
if there is no correlation among categories. The following



sections can be applied to any popularity model of fj|i, e.g.,
uniform distribution or Mandelbrot-Zipf distribution [21].

III. AVERAGE SUCCESSFUL DELIVERY RATE FOR
CONSECUTIVE USER DEMANDS

In this section, the successful delivery rate for consecutive
user demands is mathematically derived, and the problem for
finding the caching policy is presented.

A. The Average Successful Delivery Rate of Type-L User

Note that the type-L user requests L contents in a row.
Therefore, the outage event occurs for the type-L user if at
least one of L content requests fails to be delivered. According
to Slivnyaks theorem, we consider a typical user located at the
origin and the statistics of the typical user represent those of
any other user generated by a PPP with the same intensity.
If the user desires content i and there are multiple helper
candidates caching content i, it is reasonable for the user to
download the content from the helper whose channel condition
is the strongest among the candidates.

Let Ri be the data rate of the typical type-L user to
receive the desired content i from the helper whose channel
is the strongest among helper candidates caching the content
i. Denoting the Rayleigh fading channel from the user to the
nearest caching helper for downloading content i by hi, the
data rate of the user for downloading file i is given by

Ri = B log2

(
1 +
|hi|2

σ2

)
, (1)

where B is the bandwidth, assuming a unit transmit power and
a normalized noise variance of σ2.

Then, the average success probability of type-L user for
content delivery is given by

P oL =
∑
i1

· · ·
∑
iL

fi1fi2|i1 · · · fiL|iL−1
·
iL∏
i=i1

Pr{Ri ≥ ρ}, (2)

where il represents the index of the l-th content requested
by the user and ρ is the threshold for data rates. Although
it is omitted in (2), il 6= i1, · · · , il−1 is assumed for all
l = 2, · · · , L as mentioned in (23). In other words, we suppose
that the previous consumed content will not be requested
again in future because most of devices usually store contents
consumes in recent in their local cache memory.

Since the channel power |hi|2 follows the chi-squared dis-
tribution, i.e., Nakagami-1 fading channel and is the strongest
among those of caching helper candidates, according to
Lemma 1 in [19], the reliable transmission probability can
be obtained by

P{Ri ≥ ρ} = 1− exp
{
− κpi

( 1

σ2(2ρ/B − 1)

) 2
α
}
, (3)

where κ = πλΓ( 2
α +1). Thus, the average successful delivery

rate of type-L user can be written by

P oL =
∑
i1

· · ·
∑
il

fi1fi2|i1 · · · fiL|iL−1
·
iL∏
i=i1

(1− e−Cpi), (4)

where C = κ
(

1
σ2(2ρ/B−1)

) 2
α

.

B. Problem Formulation
The goal of this paper is to find the caching probabilities

which maximize the average successful delivery rates of all
types of users with the maximum number L of consecutive
content requests. Then, the optimization problem is formulated
to maximize the minimum average success probability among
all types of users as follows:

p∗ = arg max
pi,i=1,··· ,F

[
min{P o1 , · · · , P oL}

]
(5)

s.t.
∑N

i=1
pi ≤M (6)

0 ≤ pi ≤ 1. (7)

where (6) results from the finite memory size of caching
helpers based on the probabilistic caching method in [17].

IV. OPTIMAL PROBABILISTIC CACHING POLICY

This section provides key lemmas and finds the probabilistic
caching policy by solving the problem of (5)-(7).

A. Key Lemmas and Problem Re-Organization
The optimization problem of (5)-(7) can be re-organized

via the following lemmas. By using Lemma 1, the max-min
problem of (5)-(7) can be transformed into a simple convex
maximization problem. In addition, the Lemma 2 turns the
inequality constraint (6) into the equality constraint.

Lemma 1. P ol > P om for any l,m ∈ {1, · · · , L} and l < m.

Proof: By showing P ol > P ol+1, this can be proved.

P ol − P ol+1

=
∑
i1

· · ·
∑
il

fi1fi2|i1 · · · fil|il−1
·

[
il∏
i=i1

(1− e−Cipi)

−
∑
il+1

fil+1|il

{ il∏
i=i1

(1− e−Cipi)(1− e−Cil+1
pil+1 )

}]
=
∑
i1

· · ·
∑
il

fi1fi2|i1 · · · fil|il−1

×

[
il∏
i=i1

(1− e−Cipi)
(

1−
∑
il+1

fil+1|il(1− e
−Cil+1

pil+1 )
)]

> 0.

Since
∑
il+1

fil+1|il = 1, the second equality and the last
inequality are satisfied.

Lemma 2. The optimum vector p∗ = (p∗1, · · · , p∗F )T satisfies∑F

i=1
p∗i = M. (8)

Proof: Assume
∑F
i=1 p

∗
i < M , then ∃ε > 0 such that∑F

i=1 p
∗
i + ε ≤M and p∗k+ ε ≤ 1 for certain k ∈ {1, · · · , F}.

Let p′ , (p∗1, · · · , p∗k + ε, · · · , p∗F )T , then since P oL is an
increasing function of any pi for i = {1, · · · , L},

P oL(p′) < P oL(p∗).



Thus, it obviously leads to contradiction.
According to Lemmas 1 and 2, the max-min optimization

problem of (5)-(7) can be transformed into the following
maximization problem:

p∗ = arg max
pi,i=1,··· ,F

P oL (9)

s.t.
∑F

i=1
pi = M (10)

0 ≤ pi ≤ 1 (11)

and this optimization is convex since P oL is convex by (4).

B. Subproblem for Optimization of Two Contents and Iterative
Algorithm

Since P oL is a multivariable function and consists of many
exponential terms, the iterative algorithm is used to find
optimal caching probabilities. The subproblem with respect to
two variables is formulated by considering the other variables
as constants, i.e., let pm and pn be caching probabilities to
be optimized and make the other probabilities {pi}i 6=m,n be
fixed. In terms of pm and pn, P oL of (4) can be divided into
four different parts as follows:

P oL = am,n(1− e−Cpm)(1− e−Cpn)+

bm,n(1− e−Cpm) + dm,n(1− e−Cpn) + em,n, (12)

where am,n, bm,n, dm,n, and em,n are constants consisting
of system parameters, e.g., fi, fj|i, e−Cpk for all i, j, k ∈
{1, · · · , F} and k 6= i, j. The first part of (1 − e−Cpm)(1 −
e−Cpn) represents the event where the user requests both
contents m and n. Similarly, the second and third parts of
(1− e−Cpm) and (1− e−Cpn) correspond to the events where
the user requests only one content between m and n. The last
constant term em,n is obtained for when the user does not
request contents m and n. Therefore, bm,n is given by

bm,n = fm
∑
i2

· · ·
∑
iL

fi2|m · · · fiL|iL−1

+
∑
i1

∑
i3

· · ·
∑
iL

fi1fm|i1 · · · fiL|iL−1

+ · · ·+
∑
i1

· · ·
∑
iL−1

fi1 · · · fiL−1|iL−2
fm|iL−1

. (13)

In addition, am,n, dm,n, and em,n can be obtained in a similar
way of the procedure to obtain bm,n. Then, the subproblem
for finding the optimal pm and pn is formulated as follows:

{p∗m, p∗n} = arg min
pm,pn

M(pm,pn) (14)

s.t. pm + pn = qm,n = M −
∑F

i=1,i6=m,n
pi (15)

0 ≤ pm, pn ≤ 1, (16)

where

M(pm,pn) = (am,n + bm,n)e−C·pm + (am,n + dm,n)e−C·pn

(17)
and thisM(pm,pn) is obtained by removing the constant terms
and reversing the sign. Since {pi}i 6=m,n are fixed, pm + pn

also becomes a constant. The following proposition provides
the solution of the above subproblem.

Proposition 1. The optimal solution of the problem (14)-(16)
is as follows:

{p∗m, p∗n} =
{p̃m, p̃n} if 0 ≤ p̃m, p̃n ≤ 1

arg min
{pm,pn}

{M(0,qm,n),M(qm,n,0)} elseif qm,n < 1

arg min
{pm,pn}

{M(1,qm,n−1),M(qm,n−1,1)} elseif qm,n ≥ 1,

(18)

where

p̃m =
1

2C
log

bm,n
dm,n

+
1

2
qm,n (19)

p̃n =
1

2C
log

dm,n
bm,n

+
1

2
qm,n. (20)

Proof: According to the arithmetic-geometric mean in-
equality, the lower bound on M(pm,pn) is given by

bm,ne
−C·p̃m + dm,ne

−C·p̃n ≥ 2
√
bm,ndm,ne−C·qm,n . (21)

The equality holds if and only if

bm,ne
−c·p̃m = dm,ne

−c·p̃n . (22)

Since p̃m = qm,n − p̃n, p̃m and p̃n are found as given by
(19) and (20), respectively. For (16), p̃m and p̃n become the
optimal solution only when 0 ≤ p̃m, p̃n ≤ 1. Otherwise, the
four boundary conditions are compared as follows: 1) pm = 0
and pn = qm,n, 2) pm = qm,n and pn = 0, 3) pm = 1 and
pn = qm,n − 1, and 4) pm = qm,n and pn = qm,n − 1. Thus,
the optimal solution (18) is obtained.

Then, a multivariable function can be optimized by itera-
tively optimizing the subset of variables if the convergence
is guaranteed. To find the optimal p∗ = [p∗1, · · · , p∗F ], the
subproblem of (14)-(16) can be iteratively applied for all
combinations of m and n, where m,n ∈ {1, · · · , F} and
m 6= n. The details are given in Algorithm 1.

If a sequence is nonincreasing and has a lower bound, this
sequence converges. We find the minimum of the dual-variable
problem of (14)-(16) in each iteration, and the sequence of
the updated objective valuesM(pm,pn) is generated. Since this
sequence is non-increasing and the average success probability
has a trivial lower bound of 0, i.e., 0 ≤ P oL, the convergence
of the proposed algorithm is guaranteed.

V. NUMERICAL RESULTS

In this section, we numerically show the impacts of catego-
rized contents and consecutive user demands on the caching
policy. In addition, we show how caching probabilities and
the average success probabilities for content delivery are af-
fected by various network parameters. For simulation settings,
F = 25 contents are grouped into K = 5 categories and
each consists of N = 5 contents. For simplicity, uniform
distribution is assumed for the popularity model of fj|i, as



Algorithm 1 Iterative algorithm for the optimization problem
of (9)-(11)
Precondition:

1: • M : memory size
• F : the number of contents

2: p∗i = M
F for all i ∈ {1, · · · , F}

3: for ∀(m,n) ∈ {1, · · · , F} × {1, · · · , F} and m 6= n do
4: qm,n = M − p∗m − p∗n
5: Find p̃m and p̃n according to (19) and (20).
6: if 0 ≤ p̃m, p̃n ≤ 1 then
7: p∗m ← p̃m and p∗n ← p̃∗n
8: else if qm,n < 1 then
9: {p∗m, p∗n} ← arg min

{pm,pn}
{M(0,qm,n),M(qm,n,0)}

10: else if qm,n ≥ 1 then
11: {p∗m, p∗n} ← arg min

{pm,pn}
{M(1,qm,n−1),M(qm,n−1,1)}

12: end if
13: end for

follows:

fj|i =

{
q

(N−N (G(i))) if G(j) = G(i)
(1−q)

(F−N−N (
⋃
n 6=i G(n)))

if G(j) 6= G(i)
, (23)

where q is the probability of requesting the content in the same
category of the previous content. In addition,N (k) denotes the
number of contents in Gk which the user has already consumed
before. Suppose that the lower content index indicates the
more popular content, i.e., fi > fj for i < j, and the content
lists of K categories are as follows: G1 = {1, 6, 11, 16, 21},
G2 = {2, 7, 12, 17, 22}, G3 = {3, 8, 13, 18, 23}, G4 =
{4, 9, 14, 19, 24}, and G5 = {5, 10, 15, 20, 25}. Assume that
M = 3, B = 1MHz, ρ = 1Mbps, and α = 3. In addition,
L = 4, λ = 0.2, and q = 0.9 are used, unless otherwise noted.

For comparison purposes, the probabilistic caching policy
optimized for the case of L = 1 to maximize the average
success probability for content delivery [19] is considered. Fig.
2 shows the caching probabilities of all contents in F . In Fig.
2, caching probabilities obtained by the comparison scheme in
[19] depend on the content popularity for one-shot request, i.e.,
Zipf distribution. On the other hand, caching probabilities of
the proposed scheme are largely influenced by the popularity
model for consecutive content requests. Caching probabilities
of contents in G1 are the highest among all categories and the
contents in G5 have very the smallest caching probabilities.
For example, even though f5 is much larger than f11, p5 is
smaller than p11 because content 11 belongs to the category
of G1 which is the most popular among all categories.

In Fig. 2, when L = 4, it seems that contents in the
same category have almost the identical caching probabilities,
because the user is likely to request L = 4 contents in the same
category owing to high q. Meanwhile, when L = 2, contents
1-5 have larger caching probabilities than other contents in the
same category. In addition, as q grows, differences in caching
probabilities by categories increase, i.e., the dependency of
caching probabilities on the popularity model for consecutive

Fig. 2. Caching probabilities for each content

Fig. 3. The average successful delivery rate vs. SNR

content requests becomes larger than that for one-shot request.
As α grows, i.e., the pathloss effect increases, the number of
caching node candidates decreases, therefore the impact of
popularity difference on caching probabilities becomes large.

In Fig. 3, the plots of average success probabilities for
content delivery versus SNR are shown. Overall, the proposed
caching policy outperforms the comparison scheme and the
performance gain decreases as SNR grows. Additionally, a
performance gain of the proposed scheme compared to the
comparison technique increases as L and/or q grows. As
shown in Fig. 2, caching probabilities of the proposed scheme
and comparison one have more differences with larger α,
therefore a performance gain of the proposed one also in-
creases.

The impacts of the skew factor of the Zipf distribution,
i.e., γ, and the PPP intensity of helpers, i.e., λ, are shown
in Figs. 4 and 5, respectively. The interesting result different
from [19] is that P oL of the comparison scheme decreases as γ,
increases. Large γ makes the difference in popularity among
all contents much greater. For example, f2 becomes larger but
f11 gets smaller as γ increases. However, as we have seen
in Fig. 2, when users request multiple contents in a row, p∗11
is larger than p∗2 because content 11 belongs to G1, the most
popular category. Therefore, an increase of γ does not have a
good effect for the comparison scheme when the consecutive
user demands for categorized contents are considered. On
the other hand, P oL of the proposed algorithm improves as γ
grows. Additionally, in Fig. 5, a performance gap between the



Fig. 4. The average successful delivery rate vs. γ

Fig. 5. The average successful delivery rate vs. λ

proposed and comparison techniques increases as the number
of caching helper candidates for downloading the desired
contents continuously decreases.

VI. CONCLUDING REMARKS

This paper proposes an optimal probabilistic caching policy
when users request different numbers of categorized contents.
The proposed scheme captures the essential characteristics of
video delivery: contents in the same category have higher rel-
evance and different users demand different content consump-
tion. The optimal caching probabilities for multiple contents
are obtained by iteratively optimizing the subproblem with
respect to two contents in order to maximize the minimum of
the average successful delivery rates of all users. The impacts
of categorized contents and consecutive user demands on the
caching policy are clearly shown by numerical results.
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